1. Read the article and choose from the list A-H the best phrase to fill each of the spaces 1-8.

PROTEINS

Adapted from http://en.wikipedia.org/wiki/Protein
Most proteins consist of linear polymers built 1. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group, a carboxyl group, and 2. \qquad Only proline differs from this basic structure as it contains an unusual ring to the N -end amine group, which forces the $\mathrm{CO}-\mathrm{NH}$ amide moiety into a fixed conformation. The side chains of the standard amino acids have 3. \qquad ; it is the combined effect of all of the amino acid side chains in a protein that ultimately determines 4. \qquad and its chemical reactivity.

The amino acids in a polypeptide chain are linked 5. \qquad Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as 6. \qquad . The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that the alpha carbons are roughly coplanar. The other two dihedral angles in the peptide bond determine 7. The end of the protein with a free carboxyl group is known as the Cterminus or carboxyl terminus, whereas the end with a free amino group is known as 8. \qquad . .
A. the main chain or protein backbone
B. a great variety of chemical structures and properties
C. the N -terminus or amino terminus
D. a variable side chain are bonded
E. by peptide bonds
F. from series of up to 20 different $\mathrm{L}-\alpha$-amino acids
G. the local shape assumed by the protein backbone
H. its three-dimensional structure

2. Now read the sentences and complete the spaces with appropriate words:

a. Most proteins consist of \qquad polymers built from \qquad of up to 20 different L- α-amino acids.
b. The amino acids in a \qquad chain are \qquad by peptide bonds.
c. The peptide bond has two \qquad forms that contribute some double-bond character and \qquad rotation around its \qquad - .
d. The end of the protein with a free carboxyl group is known as the carboxyl

